自考“高等数学(一)”复习指导(4)
五、多元函数微积分学
(一)多元函数微分学
1.知识范围
(1)多元函数
多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念
(2)偏导数与全微分
偏导数 全微分 二阶偏导数
(3)复合函数的偏导数
(4)隐函数的偏导数
(5)二元函数的无条件极值与条件极值
2.要求
(1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。
(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。
(3)掌握二元函数的一、二阶偏导数计算方法。
(4)掌握复合函数一阶偏导数的求法。
(5)会求二元函数的全微分。
(6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。
(7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。
(二)二重积分
1.知识范围
(1)二重积分的概念
二重积分的定义二重积分的几何意义
(2)二重积分的性质
(3)二重积分的计算
(4)二重积分的应用
2.要求
(1)理解二重积分的概念及其性质。
(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。
(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。
六、无穷级数
(一)数项级数
1.知识范围
(1)数项级数
数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件
(2)正项级数收敛性的判别法
比较判别法 比值判别法
(3)任意项级数交错级数 绝对收敛 条件收敛 莱布尼茨判别法
2.要求
(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。
(2)掌握正项级数的比值判别法。会用正项级数的比较判别法。
(3)掌握几何级数、调和级数与级数的收敛性。
(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。
(二)幂级数
1.知识范围
(1)幂级数的概念
收敛半径 收敛区间
(2)幂级数的基本性质
(3)将简单的初等函数展开为幂级数