您的位置:自考365 > 复习指导 > 笔记串讲 > 教育学 > 2006年4月“生理心理学”串讲资料(2)

2006年4月“生理心理学”串讲资料(2)

2007-01-16 15:53   【 】【我要纠错

  第五章 学习及其神经生物学基础

  ★☆一、什么是联想学习、种类、特点?

  答:联想式学习是指由两种或两种以上刺激所引起的脑内两个以上的中枢兴奋之间,形成的联结而实现的学习过程。根据外部条件和实验研究方法不同,分三种类型:尝试与错误学习、经典条件反射和操作式条件反射。三种类型的共同特点:是环境条件中那些变化着的动因在时间和空间上的接近性,造成脑内两个或多个中枢兴奋性的同时变化,从而形成脑内中枢的暂时联系。因此3种学习模式统称联想式学习,包含外部动因间的联结、刺激-反应联结和脑内中枢间的联结(暂时联系)。

  △□◎二、非联想学习分几种?区别?

  答:两种非联想式学习模式:习惯化与敏感化。非联想式学习是因为行为变化仅由单一模式的刺激重复呈现而引起,与之相应在脑内引起单一感受系统的兴奋变化。两种非联想式学习模式的区别,在于习惯化刺激是由生物学意义不明确的无关刺激重复作用而引起;敏感化则有显著生物学意义的刺激,如痛觉刺激重复作用所造成。

  ★☆什么是程序性学习?其必要的脑中枢位于哪?其经典代表实验是什么?

  答:无论是联想式学习还是非联想式学习,经过多次训练可以达到非常熟练的程度。这时的学习模式出现了新的特点,短潜伏期的快速反应是一种新的学习模式,其脑机制中最必要的中枢是小脑深部核。在生理心理学研究中,以兔瞬眼条件反射为其典型代表。

  ◎认知学习:与经验式学习不同,高等灵长类和人类的许多学习过程,并不总是建立在重复的个体经验基础之上,往往一次性观察或摹仿就会完成。这种学习模式建立在视觉认知过程的基础之上,又可称认知学习。

  味-厌恶式学习:味觉刺激具有长时间延缓的学习效应,味觉刺激与毒物间的学习效应强度大于味觉与皮肤痛刺激间的学习效应,使味-厌恶学习行为模式,既具有联想式学习的特点,也具有非联想式学习特点。

  印记式学习:鸟类和低等哺乳动物中,存在的特殊的习得行为模式。

  ★☆简述何为脑的等位论?用什么实验证明?

  答:1917年,美国学者拉施里着手研究动物联想式学习的脑定位问题,以寻求一些脑结构在联想学习中的作用,即脑的机能定位关系。得出了相反的结论,即大脑的等位性、整体性机能原则,只要10%-50%的大脑皮层损坏,动物学习行为就受到影响。其动物学习障碍与损毁皮层部位的大小成正比。损毁50%皮层就使动物完全丧失学习能力。

  脑等位论与机能定位的对立?答:上面的脑等位论先回答上。汤姆逊在总结学习记忆的生物学基础时指出,切除大脑的动物仍可建立经典瞬眼的条件反身,条件反射建立的基础,即暂时联系的接通是神经系统的普遍特征,并不是大脑皮层的特殊功能。简单运动条件反射最必要的中枢位于小脑;简单空间辨别学习的中枢位于海马;伴有植物性神经系统功能变化的快速条件反射,形成的中枢位于杏仁核;复杂空间关系或视觉认知学习,由下颞叶或颞顶枕联络区皮层实现;复杂时间、空间综合学习由前额叶皮层完成。由此可见,尽管暂时联系的形成是神经系统的普遍功能,符合脑等位论思想,但因学习类型和复杂程度不同,完成学习过程的脑网络组成也就有所不同,这又符合机能定位的思想。脑机能的整体性和等位性与机能定位性同时存于学习过程,是脑功能对立统一体的两个侧面。

  学习过程是脑的高级机能,不是某一种特殊分子变化的结果,而是有多种物质经过复杂的代谢环节参与学习过程。由几个亚单元组成的受体蛋白或酶蛋白,可以同时接受条件刺激和非条件刺激的影响发生变构作用,实现两种刺激间的联结。蛋白分子变构作用是学习记忆的基本机制。神经生物学发现两大类受体蛋白分子,即配体门控受体家族和G-蛋白相关的受体家族,均是参与学习机制的主要分子。

  联络区皮层

  颞下回的功能?通过什么实验来证明?(或什么是延缓的物体不匹配训练?证明什么问题?)答:颞下回可分两部分:远离枕叶的部分与三维物体的认知学习有关,与枕叶距离较近的部分与二维图形鉴别学习有关。实验:对猴进行了延缓的物体不匹配训练。首先让猴观察一个圆柱体,当它将圆柱体移开就会发现下面有一小块食物。间隔10秒钟以后,猴的面前出现两个物体,一种是刚刚见过的圆柱体,另一个是未见过的长方形。这时猴移动长方体也会得到一小块食物,如果它移动曾见过的圆柱体,则得不到食物。训练几日,这种行为模式就得到巩固。对猴手术损毁与枕叶相邻的两半球颞下回,需对之进行73次训练才能重新习得这种行为;而损毁与枕叶远隔部位的颞下回,则训练1500次仍不能重新学会这种行为模式。将行为训练中匹配时间间隔从10秒逐渐延长可达120秒,损毁与枕叶相邻的颞下回,不影响这种逐渐延长的延缓反应;损毁远隔枕叶的颞下回,则猴不能学习这种延缓的不匹配行为。根据这一实验结果,他们认为在认知学习行为和物体记忆中,远隔枕叶的颞下回具有重要作用。电刺激颞中回和记录颞下回神经元单位发放的实验研究,也证明了颞下回在不同颜色物体匹配学习和延缓记忆中具有重要作用。

  (考过论述)什么是延缓反应和交替延缓反应,它证明了什么问题?

  △□关于前额叶皮层与学习记忆的关系问题,1935年杰克逊的延缓反应实验,一直被誉为经典研究的范例。实验:让猴观察眼前的两个食盘,其中一盘内有食物,然后将两食盘盖起来再用幕布将它们遮起以避免猴盯食盘。几秒或几分钟后将幕布拿开,观察猴子首先打开哪个食盘盖。如果猴打开原先放好食物的食盘盖,它就会得到食物奖励。对实验程序稍加修改,只有当猴记住前一次获得奖励食盘的位置,下一次打开另一位置食盘的盖,才能再次得到奖励。这种行为模式称为交替延缓反应。延缓反应和交替延缓反应既是空间辨别学习模式,又是短时记忆的行为模式,即是时间、空间相结合的学习模式。正常猴对于不同延缓时间的延缓反应,甚至是几分钟的延缓反应,也很容易建立起来。但是,对双侧前额叶损伤的猴即使是建立1-2秒钟的延缓反应,也十分困难。前额叶皮层损伤引起短时记忆障碍,是导致延缓反应或交替延缓反应困难的主要原因。仔细分析延缓反应的行为模式,我们可以将之归纳为两个不同的因素:空间辨别反应和时间延迟反应。只有两个因素同时存在,前额叶损伤行为障碍才能表现出来。如果仅仅要求动物进行空间辨别,则前额叶损伤并不影响这种行为模式的训练;对动物仅进行延缓条件反应不伴有空间辨别,这种行为模式也不受前额叶损伤的影响。由此可以认为,□△前额叶联络区皮层与时间和空间关系的复杂综合功能有关。

  海马在学习中的作用

  辐射形8臂迷津证明空间辨别学习;

  海马损毁的动物,多次重复某一新异刺激,朝向反射也不消退;在食物强化的延缓条件反射中,动物在延缓期内就出现过多的过早食物运动反应,这些事实说明海马具有抑制性调节作用;

  情绪性学习的调节:边缘系统内部的相互联系。

  第六章 记忆的生理心理学基础

  ★☆什么是记忆痕迹理论?我们用现在的观点如何认识它?

  答:60-70年代间形成的记忆理论,将人脑内的记忆过程大体分为两类,即短时记忆和长时记忆。前者的脑机制为神经回路中生物电反响振荡;后者的神经生物学基础,是生物化学与突触结构形态的变化。这就是盛行20多年的记忆痕迹理论。现在的观点认识-不足之一:实验说明了短时记忆痕迹的电学活动性质,但不能由此认为短时记忆痕迹仅仅是反响回路的电学活动。70年代以来许多实验室都证明,海马结构中存在着三突触回路,在三突触回路中还存在着长时程增强效应,可能是从短时记忆痕迹转化为长时记忆痕迹机制之一。然而在长时程效应中,有一系列复杂的生物化学反应参与,而且任何一个突触传递都包括复杂的化学传递机制。所以就短时记忆痕迹的本质来讲,把它仅仅归结为神经元回路反响的电学活动是60年代理论的历史局限性表现。不足之二:研究说明脑形态结构与功能均具有很大的可塑性,学习记忆能力与脑结构变化有一定关系,但并不能精确说明长时记忆痕迹究竟与哪几项脑结构或突触变化有关。突触前合成、存储和释放递质的功能以及突触后受体的变化虽与学习记忆有一定关系,但对长时记忆痕迹来说也不是特异性的机制。神经信息在突触传递中的化学机制是神经系统的各种功能基础,当然也包括长时记忆痕迹的形成;但并不是特异性的。所以关于长时记忆痕迹的突触理论或脑结构变化理论都未能得到特异性的证据支持。

  长时记忆的脑形态学基础?

  △☆传统记忆痕迹的最后一个观点,即长时记忆痕迹是突触或细胞的变化。虽然记忆痕迹理论形成时,人们对突触化学传递的知识还很少,但根据当代积累的科学知识,我们可以把这一论断归结为3方面含义:突触前的变化包括神经递质的合成、储存、释放等环节;突触后变化包括受体密度、受体活性、离子通道蛋白和细胞内信使的变化;形态结构变化包括突触的增多或增大。他们对比了生活环境、学习能力和脑结构变化的关系。这一研究足以说明脑形态结构与功能均具有很大的可塑性,学习记忆能力与脑结构变化有一定关系,但并不能精确说明长时记忆痕迹究竟与哪几项脑结构或突触变化有关。

  海马的记忆功能

  海马:不仅与学习记忆有关,还参与注意、感知觉信息处理、情绪和运动等多种生理心理过程的脑调节机制。

  海马→穹窿→乳头体→乳头丘脑束→丘脑前核→扣带回→海马,这条环路是30年代就认识到的边缘系统的主要回路,称为帕帕兹环。

  海马结构与情绪体验有关,近些年发现,内侧嗅回与海马结构之间存在着三突触回路,它与记忆功能有关。

  海马的两个记忆回路:帕帕兹环和三突触回路。

  ☆三突触回路具有什么特性,怎样证明?它可能是什么样的机制基础?答:3突触回路是海马齿状回内嗅区与海马之间的联系,具有特殊的机能特性,长时程增强现象,成为支持长时记忆机制的证据。

  实验:长时程增强(LTP)现象,即电刺内嗅区皮层向海马结构发出的穿通回路时,在海马齿状回可记录出细胞外的诱发反应。如果电刺激由约100个电脉冲组成,在1-10秒内给出,则齿状回诱发性细胞外电活动在5-25分钟之后增强了2.5倍,说明电刺激穿通回路引起齿状回神经元突触后兴奋电位的LTP,因而这些神经元单位发放的频率增加。后来他们又报道,海马齿状回神经元突触电活动的LTP现象可持续数月的时间。他们认为,由短暂电刺激穿通回路所引起的三突触神经回路持续性变化,可能是记忆的重要基础。

  △◎□柯萨可夫氏记忆障碍

  1887年俄国精神病学家柯萨可夫,将长期酗酒而造成的记忆障碍特点归结为:遗忘加虚构。慢性酒精中毒者最初出现轻微的顺行性遗忘,即对刚刚发生的事不能形成新的记忆;随后又出现逆行性遗忘,即对病前近期发生的事情选择性遗忘,对早年的事情仍保持良好记忆。既不能形成新的记忆,又丧失对某些往事的记忆,而且对自己记忆力的这种严重变化又缺乏自知之明,面对别人提问时,竟不自觉编造谎言以虚构内容填补记忆空白。

  顺行性遗忘症:对早发生的正常事情不能形成新的记忆。

  ★☆顺行性遗忘的病人有哪些特点?哪部分受损伤引起该症状?

  答:切除了大脑两半球的内侧颞叶和海马。术后该人智力测验成绩正常;对手术前的近事和远事记忆良好;衣着整洁,能与人交谈,虽然说话的语调平淡,但词汇的使用、句子的表达和发音都很正确;对别人的话,甚至笑话都能正确理解。这位病人智能正常,也没有知觉障碍,最突出的问题是难以形成新的长时记忆。对他来说,每天的每件事都与过去无关。海马和内侧颞叶损伤形成顺行性遗忘症

  △□记忆形态的多样性:正常人的记忆,既有寄存和存贮信息的功能,又有回忆或提取信息的功能。海马损伤的病人只能回忆和提取信息,不能形成新的长时记忆;此外一些脑外伤的病人,在伤后的一段时间里,可以形成新的记忆,却不能回忆起伤前的近事。这些都说明,记忆可以分离为不同系统。这种双重分离现象能最可靠地证明,寄存或存贮信息的过程和提取信息的过程是两个不同的记忆功能系统。这在认知神经心理学中称为双分离技术。双分离技术和双重任务法是多重记忆系统研究的重要途径。

  □哪些事情能说明记忆的多重性?请被试看一封信,并告诉他看完后要详细讲出信中的内容。在被试看信的同时,室内放音乐。当被试讲述完信的内容时,顺便问他对听到的音乐有何看法。这时,这个人实际上完成了双重记忆任务。一个主要任务是理解和记忆信的内容,另一个次要任务是记住听到了什么音乐。这种实验称为双重任务法。

  在双重任务的记忆研究中,次要任务大多数都不事先告诉被试。采用双分离技术和双重任务实验方案,在脑损伤病人和正常人中发现多种形态的记忆系统。一大类记忆是可以用口头或笔头表达的,与之对应的是难以言传的非表述性记忆。当你向别人讲述昨天参加的朋友婚礼时,你脑海里会浮现出婚礼的一幕幕情景,这就是情景性或情节性表述记忆;假如你帮助同学补数学课,这是一种语义性表述记忆。一些人形象性的情景记忆能力很强,讲起过去的事来活龙活现;但对干巴巴的哲学理论或数学问题的表述能力就差一些。我们说此人情景性记忆力强,语义记忆较差。一些思维型个性特征的人,语义记忆能力强,情景性记忆稍差些。可以两种记忆系统是可以分离开的。

  □非描述记忆有更多的表现形态,包括程序性记忆、习惯性记忆、间接性事物的联想记忆和内隐性记忆等。随着熟练程度的提高,使一个孤立的动作变成连续的、协调的、自动化的运动旋律,即非表达性程序记忆。

  非表述记忆是内隐性记忆,指本人并未觉得已经记住的事,经过测查可证明在脑内留下了深刻印象。

  第七章 言语、思维的脑机制

  失语症

  □△失语症是一类由于脑局部损伤而出现的语言理解和产出障碍。这类病人意识清晰、智能正常,与语言有关的外周感觉和运动系统结构与功能无恙。所以,失语症不同于智能障碍、意识障碍和外周神经系统的感觉或运动障碍。它是语言中枢局部损伤所造成的一类疾病。

  语言理解障碍又可分别口头语言理解和书面语言理解障碍;语言产出障碍分为语词发音、用语、语法和书写功能障碍,以及口头语言的流畅性和韵律异常,传统分类把语言产出障碍,统称为运动性失语症。除书写困难称为的失写症是左额下回语言运动区受损伤所致,其他类型语言产出障碍均被看成是左额下回语言运动区受损伤所致。特点:这类病人说话很慢,似乎像初用外语讲话的人,边说边寻找单词,句子结构错乱或用词不当,常常用一些零散的名词作为主题词,缺乏谓语的正常表达方式。

  ◎感觉性失语症:病人主动性语言产出功能基本正常,但听不懂别人的口头言语,称为听觉性失语症,是维尔尼克区受损所致。◎看不懂书面语言称为失读症,又称视觉失语症,顶叶皮层的顶下小叶和角回受损所致。

  ◎皮层间失语症的病人与传导性失语症症状相反,可以复述别人的话,但却不理解其含义,也不能自发地用正确语言表达自己的意思。次级感觉皮层受损所致。

  ◎命名性失语症:病人可以正常理解语言,并能产出有意义的语言;但往往不能正确叫出物体的名称,只能用语言描述该物体的属性或功能。颞叶皮层受损所知,颞叶前、中部皮层功能与具体物体的名词表征有关;左颞叶后部与普通概念及名词表征功能有关。

  ★☆论述用正常人脑作被试,什么实验能够证明言语思维和大脑两半球功能的一侧化?△□

  ⑴韦达试验:对人脑两半球言语功能进行实验性研究的早期方法是韦达试验。韦达首先应用异戌巴比妥单侧颈动脉注射法选择性地麻痹左脑半球或右脑半球,以考查人类言语功能的变化。他发现药物注射后,在5分钟之内注射药的一侧半球功能短暂丧失、除偏瘫偏盲和偏身感觉障碍外,还伴有失语症。如果注入药物一侧为优势半球,则失语症可持续2分钟,随后伴有认知不能和计数障碍。反之,药物作用于非优势半球,只能引起几秒钟的言语障碍,且不伴有命名和计数障碍。对言语功能来说,70%的人以左半球为优势,15%的人以右侧半球为优势,还有15%的人两半球的言语功能相等。韦达试验考查人脑对言语运动功能的不对称性。

  ⑵双耳分听试验:考查言语听觉功能的两半球不对称性。通过立体声耳机将成对的声音刺激(但内容不同)送至双耳,这样连续给予声音刺激,每次同时到达两侧半球的声音刺激内容不同。最后请被试说出听到的声音内容。结果表明,言语性刺激的听觉能力以左侧半球(右耳)为优势的人居多,右侧半球(左耳)对音乐性刺激的分辨能力为优势者居多;

  ⑶对语言视觉功能中两半球不对称性的实验研究多采用速示试验,将文字材料或非文字的简单图形材料在速示器中连续呈现。被试注视速示器的屏幕,每次快速呈现的材料由于时间极短,不超过200毫秒,来不及眼动和形成双眼视野的变换。所以,速示器试验保证每个半边视野的刺激沿视觉通路投射至对侧半球皮层中。根据反应时和错误率判定被试哪侧半球为优势。结果表明,对文字性材料大多数人以左半球为优势,而对非语言文字的图形材料以右侧半球为优势。韦达试验、双耳分听试验和速示试验在正常人的研究中均发现人脑言语功能中两半球的不对称性,这种不对称是出生以后逐渐获得的。言语听觉的优势半球化约在6岁时形成,言语运动的优势半球化约在10岁时形成。大脑两半球功能不对称性差异是不显著的,一般说优势半球比非优势半球的功能仅强10%左右。

  病人用隔裂脑来做实验,正常人用麻醉做实验。

  △割裂脑病人:两半球间的胼胝体后部切断。

  左右半球的不同:无论对正常被试还是对割裂脑病人的研究都表明,大脑两半球在人类认知活动中的功能是不对称的。左侧大脑半球的言语功能和抽象思维功能优于右侧半球;右侧半球的空间概括能力的形象思维功能和情感性信息处理功能优于左半左半球。关于大脑两半球功能不能称性的这种理论也得到当代脑构像研究的支持。

  □80年代以来,正电子发射层描技术(PET)对区域性脑糖代谢率和雪留恋的测定,核磁共振和脑CT对脑结构的层描技术,为正常人和病人语言思维能力的研究提供了新手段,在言语思维脑机制的研究领域中积累了学多的科学事实。

  平均诱发电位(活体实验)N1波。

  ★☆应用PET技术对人脑活体动态的测定方法?

  答:PET技术,采用减法的实验设计方案,研究了正常人言语感知、运动和联想功能时,脑区域性血流量的变化规律。减法实验设计就是让被试完成复杂程度不同的言语功能,将其区域性脑血流量根据认知任务复杂程度依次相减速。最简单的是言语知觉,让被试听或看某个词,并不要求他们做任何反应;其次,让被试读出所见或听到的单词,这不仅含有单词感知功能,还包括言语运动功能。最复杂的是联想功能,要求被试看到或听到一个目标词,联想并说出达到目标词的动作,如看见“面包”一词 ,应该说出“吃”字。被试完成言语感知任务时,得到的区域性血流量减去安静时的基础值;完成语言运动任务时的脑区域性血流量减去感觉任务时的脑血流量;完成联想任务时脑血流量再减去语言运动任务的脑血流量。这种相减的结果,分别是语言感知、运动和联想过程所需要的区域性脑血流量。结果,首先完成语词被动感知任务时,依单词呈现方式不同,被试两侧大脑的视觉或听觉初级和次级皮层脑血流量迅速增加,而且视、听皮层的血流量增加没有重叠现象。这说明语词感知过程在相应感觉通路的初级和次级皮层区内独立完成,与其他感觉通道不发生关系。其次,在语词读出任务中,两侧大脑的面部感觉与运动区皮层和辅助语言运动区皮层的脑血流量增加。最后,在语言联想功能中大脑额叶皮层,特别是左额下回(47区)和两半球前扣带回血流量增加。这些事实表明,语言感觉、运动功能不仅限于经典的布罗卡区和维尔尼克区,视、听皮层、面部感觉和运动区皮层、乃至扣带回皮层都与语言过程有。而且语言信息加工过程的初级阶段并没有明显的半球一侧化现象,在复杂联想功能中,左额皮层的优势效应才较为显著。

  言语方面证明大脑一侧化的实验:正常人(韦达实验、实体触摸实验、PET实验、双耳分听实验、速示实验)、割裂脑病人。

  第八章 本能与动机的生理心理学基础

  △□饥、饱感的脑结构△□近年来,对饱中枢的精细研究所积累的科学事实表明,具有这种生理功能的脑结构并不是下丘脑腹内侧核。下丘脑的旁室核具有饱中枢的作用。下丘脑穹窿柱周围区也具有饱效应。

  50-60年代提出经典饥饿中枢(下丘脑外侧区)和饱中枢(下丘脑腹内侧核),现在认为与饥、饱感有关的脑结构主要是下丘脑的外侧区、旁室核和围穹窿区。

  性行为:△□下丘脑的前部存在一个脑高级的雄性性行为中枢,它位于内侧视前区,称为性两形核。在雌性动物中,脑内高级性中枢位于下丘脑的腹内侧核。除了雄性动物的性两形核和雌性动物下丘脑的腹内侧核之外,两性动物的性行为还受更高级的脑中枢调节,颞叶皮层在性对象的识别和选择中发挥重要作用。颞叶损伤的人或动物均表现出严重的性功能异常。

  防御、攻击行为类型:

  母性攻击行为与保护自身的生存无关,而是一种保存和延续种族的本能行为。哺乳期的动物为保护幼仔不受外来者的侵害,以猛烈地攻击驱逐外来者。

  杀幼行为是将幼仔杀死的行为。杀幼行为也是对种族延续有利的行为,这是由于雄性动物只有杀掉哺乳中的幼仔,才能使雌性动物较早地摆脱哺乳期而重新受孕。雌性动物的杀幼行为可能与幼仔多、过于拥挤或哺乳能力所不及而引起的。母动物总是选择最弱小仔动物除掉以保证有强壮的后代延续种族。

  根据现有的科学事实,下丘脑是防御攻击行为的重要中枢,它的不同区影响着不同类型的防御、攻击行为。杏仁核、隔区等边缘系统对下丘脑的这一功能进行着调节与控制。对于情绪性攻击行为而言,杏仁核发生兴奋性调节作用,隔区产生抑制性调节作用;对于捕食攻击行为而言,杏仁核实现着抑制性调节作用。

  人的一生1/3的时间用于睡眠。

  ★☆简述人类睡眠分哪几种?特点是什么?答:人类的睡眠可以分为两种类型:慢波睡眠和异相睡眠。在慢波睡眠中,脑电活动以慢波为主,脑电活动的变化与行为变化相平行,从入睡期至深睡期,脑电活动逐渐变慢并伴随着逐渐加深的行为变化,表现为肌张力逐渐减弱,呼吸节律和心率逐渐变慢。在异相睡眠中,脑电变化与行为变化相分离,脑电活动类似慢波睡眠的入睡期,以肌张力为代表的行为变化却比深睡期还深,肌张力完全丧失,还伴有快速眼动现象和桥脑-膝状体-枕叶PGO波周期性高幅放电等特殊变化。异相睡眠又常称为快速眼动睡眠。这种类型的睡眠与做梦的关系比慢波睡眠更为密切。

  睡眠一期(入睡期),行为上安静困倦开始进入睡眠状态,清醒安静状态下的脑电活动(以8-13次/秒的α节律为主)。生长激素分泌的高峰在慢波睡眠的四期。

  □△在异相睡眠中,最有特征的行为变化是眼球快速运动,约每分钟60次左右,与异相睡眠相应,眼电现象显著加强,在桥脑、外侧膝状体和枕叶皮层中可记录到周期性的高幅放电现象,称之为PGO波。从异相睡眠中唤醒后,80%以上的人声称正在做梦,尚可陈述梦境的故事情节,形象生动以视觉变换为主。

  □△人的每夜睡眠大约由慢波睡眠和异相睡眠交替变换4-6个周期所组成,平均每个周期历时80-90分钟,包括20-30分钟异相睡眠和约60分钟的慢波睡眠。成人入睡后,必须先经过慢波睡眠1-4期和4-2期的顺序变化后,才能进入第一次异相睡眠。从上半夜到下半夜每次更替一个周期,异相睡眠的时间都有所增长。所以,后半夜睡眠中,异相睡眠时间的比例增大。

  睡眠功能:休息和从疲劳中恢复是睡眠的重要功能之一,从更积极的意义上理解,睡眠还有促进生长发育、易化学习、形成记忆等多种功能

  ☆脑干网状结构在睡眠与觉醒中的重要作用是什么,用什么实验做的?

  △□1937年著名生理学家布瑞莫建立了猫的孤立脑标本和孤立头标本。前者在中脑四叠体的上丘和下丘之间横断猫脑,此后猫陷入永久睡眠状态;后者在脊髓和延脑之间横断猫脑,则猫保持正常的睡眠与觉醒周期。他以此证明在延脑至中脑的脑干中,存在着调节睡眠与觉醒的脑中枢。

  ☆孤立脑和孤立头标本会出现哪些现象?说明什么?

  □△脑干以上横断脑(孤立脑标本),动物陷入永久睡眠状态,脑干中间横断脑(桥脑中部模断),动物70-90%时间处于觉醒状态;脑干下位横断脑(孤立头标本),动物维持正常的睡眠与觉醒周期。脑干上部的网状上行激活系统对维持觉醒状态起重要作用;桥脑下部的网状结构对睡眠起重要作用;脑干上部与下部的网状结构相互作用维持正常的睡眠与觉醒周期。

  ☆对睡眠机制的现代认识又增加了什么?

  □△70年代以来对睡眠机制的研究已经积累了相当多的科学事实,证明脑内存在着一些关键性结构,其生理、生化过程的维持与转换对睡眠具有重要作用。对于慢波睡眠来说,关键性脑结构是缝际核、孤束核和视前区、前脑基底部;对于异相睡眠,关键性脑结构是桥脑大细胞区、蓝斑中小细胞、外侧膝状体神经元和延脑网状大细胞核等许多脑结构。与睡眠有关的化学物质是单胺类神经递质、胆碱类神经递质和多肽,特别是诱导睡眠肽和γ-氨基丁酸受体蛋白质。

  △□视前区位于下丘脑的视交叉之前的部分,视交叉上核是生物钟的“起搏点”,对慢波睡眠至关重要。

  异相睡眠中哪些是开细胞、哪些是闭细胞?

  △□桥脑大细胞视为异相睡眠的开关细胞。△□与将蓝斑中这种小细胞称为异相睡眠的“闭细胞”。

  外侧膝状体具有异相睡眠眼动的命令功能,实现着眼动方向读出的神经信息编码功能。

  第九章 情绪与情感的生理心理学

  卡侬提出情绪丘脑学说,认为大脑皮层对丘脑的功能存在着抑制作用。

  帕帕兹和麦克林提出情绪的边缘系统学说,认为大脑边缘皮层、海马、丘脑和下丘脑等结构在情绪体验和情绪表现中具有重要作用。

  帕帕兹认为在边缘系统结构中,从海马经穹窿、乳头体、丘脑前核和扣带回,再回到海马的环路(帕帕兹环路),对情绪产生具有重要作用。在这一环路中,下丘脑与情绪的表现有关,而扣带回与新皮层的联系和情绪体验更为密切。麦克林认为海马和颞叶皮层在情绪的体验中更重要。

  关于情绪和情感的生理心理学经典理论,我们按其形成的历史时期不同,分别介绍了詹姆士-兰格理论、卡侬的丘脑学说、巴甫洛夫的皮层机能动力定型理论、林斯莱的情绪激活学说、帕帕兹-麦克林的边缘系统理论和塞里的应激学说,与这些理论形成的同时,还有许多著名的经典实验,对情绪生理心理学的发展具有重要历史意义,如假怒实验、怒叫反应和自我刺激实验等。

  ◎什么是假怒?切除猫的大脑皮层之后,猫对各种不愉快的刺激如轻触、气流等均表现出极度夸大的攻击性行为表现:弓腰、竖毛、咆哮、嘶叫和张牙舞爪等。这些行为缺乏指向性,很难说动物伴有怒的内心体验,所以将这种动物的行为表现称作“假怒”。实验证明只要手术破坏边缘皮层、大脑皮层与下丘脑的神经联系,使大脑皮层对下丘脑的抑制解除,下丘脑机能亢进就会出现“假怒”。

  △□我国生理学家卢于道和朱鹤年于1937年电刺激脑中枢,发现猫能发出呻吟的声音。1952年他们又深入研究了猫中脑的怒叫中枢。

  △□下丘脑、隔区、杏仁核、海马、边缘皮层、前额皮层和颞叶皮层等均是情绪过程的重要脑中枢。

  新皮层、边缘系统和下丘脑在情绪过程中的作用,它们之间存在着什么关系?答:下丘脑受着高级中枢的双重调节作用,既有兴奋性调节,又有抑制性调节。一些古老的脑结构,如隔区和皮层内侧杏仁核等结构以抑制性调节为主,新皮层和基外侧杏仁核,则以兴奋性调节为主。

  ◎皮电反应是由皮肤电阻或电导的变化而造成的。皮肤电阻或电导随皮肤汗腺机能变化而改变。交感神经兴奋,汗腺活动加强,分泌汗液较多。由于汗内盐成分较多使皮肤导电能力增高,形成大的皮肤电反应。皮肤电反应只能作为交感神经系统功能的直接指标,也可以作为脑唤醒、警觉水平的间接指标,但无法辨明情绪反应的性质和内容。

  第十章 运动和意志行为

  △◎肌梭是一种特殊的本体感受器,即肌肉长度变化的感受器。

  △脊髓运动反射分为单突触反射、二突触反射、多突触反射。

  ①什么是单突触反射?②中枢是什么?③意义是什么?答:◎①反射弧结构中,只由感觉神经元和运动神经元形成单个突触的反射,就是单突触反射;②这种反射的感受器是肌梭,脊髓神经节感觉神经元和脊髓大运动神经元间的突触联系就是该反射的中枢。股四头肌的单突触反射存在着来自拮抗肌(股二头肌)反射中枢的抑制效应。③单突触反射具有重要的生理意义,是人体功能肌张力产生的最基本机制,也是姿势和步行等运动功能得以实现的生理基础。叩诊锤敲膝部引出的膝跳反射是典型的单突触反射;用力将肢掌上推引出的跟腱反射是二突触反射。

  ◎除感觉和运动神经之个,还有大量中间神经元参与反射活动,称为多突触反射。多突触反射代表:屈反射。

  ◎在分析脊髓运动反射的基础上,谢灵顿认为,脊髓运动神经元是各种传出效应的最后共同公路,它不但接受各种感觉神经传入的神经冲动,还接受脊髓中间神经元以及脑高位中枢发出的神经冲动。脊髓运动神经元发挥最后共同公路的功能。

  △□◎☆论述脊髓动物标本有哪些症状?说明什么问题,证明了什么?

  脊髓标本:脊髓和延脑中间切断,前面叫脊髓标标,后面叫孤立头标本。脑干标本(去大脑标本):上丘脑和下丘脑中间切断,前面叫脑干标本(或去大脑标本),后面叫孤立大脑标本)。内囊标本:两侧内囊标本,叫间脑标本(也叫大脑皮层标本)。

  (1)脊髓标本从哪切断,异常现象?脊髓动物标本的横断手术后(延脑和脊髓之间横断切开),首先看到的是脊髓休克现象,各种脊髓反射完全消失,肌张力降低呈现软性瘫痪状态。数小时或数日之后,脊髓的运动反射才逐渐恢复,这时可以观察到脱离脑控制的脊髓运动功能特点。首先,单突触和二突触反射活动十分亢进,如果轻敲膝盖或足部向上轻推时,都可看到小腿或足部出现阵挛性节律性运动,分别称膝阵挛和踝阵挛反射。这些异常亢进的脊髓反射往往造成全身肌张力增强,呈现出一种典型的硬性瘫痪状态,四肢伸肌与屈肌同时收缩,肢体发硬。如果医生用力强行弯曲其肢体时可观察到铡力样强直症状。如果这种病人能得到很好照料,他们即使长期卧床,肌肉也并不萎缩,许多植物性神经功能还保持得很好。这些事实说明,正常情况下,脑对脊髓运动功能具有控制调节作用,脱离脑的控制就会出现脊髓运动功能的亢进状态。

  (2)脑干标本对运的异常现象?(或什么是去大脑强直现象、颈紧张反射、迷路反射?脑干标本会出现哪种特异现象?)在中脑水平上横断脑,横断以下部分称脑干动物标本又称去大脑动物,横断以上部分称孤立大脑标本。研究运动功能应用去大脑动物标本,观察脱离大脑以后脑干对脊髓运动功能的作用。此时,可观察到3种特殊反射亢进现象:去大脑强直、颈紧张反射和迷路反射。去大脑以后可见动物四肢伸直、头颈向后挺直、眼球上翻,这就是去大脑强直现象。向一侧扭转头部造成另一侧颈肌紧张时,可以发现颈肌紧张侧上下肢屈曲,而对侧(头面转向侧)上、下肢仍处于强直状态。这种现象就是颈紧张反射。出现颈紧张反射的同时,还常见到两眼与头面扭转的反方向转动,称为迷路反射。这3种反射现象表明,去大脑控制以后脑干网状结构和红核、前庭核等功能亢进。(3)两侧内囊切断出现的现象:将两侧内囊切断使大脑皮层与间脑和基底神经节之间的联系中断,这种标本称为去大脑皮层动物或间脑动物。这种动物基底神经节、间脑和中脑都保存着,正常的翻正反射、步行运动功能仍不受影响;但在两侧白质或内囊受损的病人由于失去大脑皮层的控制出现了去大脑皮层性强直的姿势,表现为两上肢屈曲而两下肢强直。

  除上面讨论的3种动物标本和相应病例的临床体征外,还有许多事实表明,各高一级脑组织对低一级脑结构运动功能的控制作用大多是抑制性的;但红核、桥脑网状结构、中脑网状结构和前庭神经核对脊髓运动功能却实现着兴奋作用。这些结构脱离它们各自的高一级脑结构的控制,就会引出亢进的脊髓反射活动。

  △□与运动功能有关的大脑皮层主要定位于中央前回的初级运动区(4区)、前运动区(6区)、额叶眼区(8区)。

  ◎初级运动皮层区内存在着与躯体运动功能的空间对应关系。初级运动皮层区内存在着与皮层表面垂直的运动功能柱,从表层灰质到深层白质,全部运动神经元都有共同的“运动效应野”。

  ☆锥体系的组成、功能,有什么症状?受损伤后出现哪些反应?答:锥体系的组成:锥体系的神经纤维主要来自初级运动皮层的大锥体细胞,也有些纤维来自额叶与顶枕颞的联络区皮层。锥体系由皮层脊髓束和皮层延髓束组成。功能:◎大脑皮层运动区和锥体系的运动功能主要是发动随意运动,其次是调节和控制各级脑结构的运动功能。无论是大脑皮层运动区的损伤、内囊的损伤,还是脑干以下锥体束的损伤,都会影响随意运动的正常进行。此外,锥体系受伤还会出现一些特殊症状,是锥体系调节控制脊髓运动神经元的功能障碍,统称之为锥体系症状。它包括肌肉强直性痉挛所引起的硬瘫、深反射如膝跳反射亢进以及一些特殊的病理性反射,如巴彬斯基反射、踝阵挛反射。与这些亢进的阳性症状相伴随的是皮肤浅反射的减退或消失,最常见的是肤壁反射和提睾反射消失。这些锥体系症状是神经科医生用来论断大脑皮层运动神经元(又称上运动神经元)及锥体束受损的根据。与此相对应的是脊髓或脑干运动神经元(又称下运动神经元)受损的症状,表现为肌肉张力消失、肌肉萎缩、软瘫、浅反射和深反射均消失。

  ☆锥体外系及其运动功能、损伤症状?

  答:神经解剖学将锥体系以外的脑下行性纤维统称为锥体外系。这些纤维都不经过延脑腹侧的锥体,都不直接止于脊髓α-运动神经元,控制它的运动功能;而是通过中间神经元或脊髓γ-运动神经元的功能间接影响和调节脊髓α运动神经元的功能。锥体外系的组成复杂,其纤维来自许多结构,包括大脑皮层、纹状体、苍白球、丘脑底核、黑质、红核和脑干网状结构。此外,小脑系的神经纤维也可以看成是锥体外系的组成部分。

  组成:锥体外系在维持适度肌张力、姿势和随意运动的准确性中具有重要作用。功能:锥体外系的运动功能是随意运动的前提条件和准确性的保证。症状:所以锥体外系功能紊乱时的主要运动障碍就是肌张力异常和运动障碍。肌张力异常表现为齿轮样强直。当医生用力拉动病人弯曲的肢体时就会感到似乎在拉动一个齿轮,时松时紧断断续续地逐渐把弯曲肢体拉直。四肢肌张力的这种齿轮样强直状态,使病人常常半握两拳弯腰曲腿曲臂,走起路来是慌张步态,前冲欲倒的样子,由于脸部肌张力的异常,使病人缺乏面部表情的变换,呈假面具脸。锥体外系的运动障碍表现为静止型震颤、手足徐动、扭转性痉挛等。在神经科临床工作中,常将锥体外系运动障碍和肌张力异常统称为锥体外系症状。

  小脑的运动功能

  △□对小脑的认识(过去和现在)?长期以来,都认为小脑的主要功能是协同躯体各部分的共济运动,保持适度肌张力与躯体的平衡状态。因此,它的功能与锥体外系大同小异,甚至可以认为小脑是锥体外系组成部分。近年研究发现,小脑是快速短潜伏期运动反应中枢,也是随意运动和习得性运动反应的最必须的基本中枢。

  △□小脑损伤的病人中,突出的症状是共济失调,表现为明显的意向性震颤。安静时并没有震颤的现象,只有当病人想说话或想做某一动作时,才表现出明显的震颤,小脑意向性震颤与锥体外系的静止性震颤成为明显的对照。

  △□各脑结构对运动功能的调节与控制作用虽有不同,但它们构成统一的运动机能系统,对脊髓的运动功能发生调节作用。基底神经节以下的各级脑结构与锥体外系是调节张力提供随意运动的前提,保证运动的准确性;大脑初级运动皮层和锥体系执行随意运动的指令;大脑联络区皮层可能还有小脑,则对运动程序和指令的形成及执行运动程序的连续性、协调性发挥重要作用。

  第十一章 人格的生理心理学问题

  □△艾森克认为皮层兴奋性水平低者,表现为外向型人格特质,主动活跃地寻求刺激,以提高皮层唤醒水平弥补先天之不足。相反,皮层兴奋性水平高的人表现为内向型个性特征,沉静稳重,与外界接触少,以避免过多刺激而导致更高的皮层兴奋性水平。

  □△条件反射能力强者多为内向型人格,其神经质人格维度较低;条件反射能力弱者多为外向型人格,其神经质人格维度较高。

  △某些变态人格的脑电图类似于儿童期的脑电,有较多的慢波成分,是脑电唤醒水平较低的脑电类型。

  □性别差异是个体间生理差异中最显著的表现。

  智力

  智能包括智力、技巧和能力等个性的心理特征。智力包括知觉、计算、学习、记忆、判断、理解、推理和解决问题的能力等人们的认知能力。

  ◎智力分为晶态智力和液态智力,晶态智力是人们知识和经验的结晶产物,是通过语言、文字的提炼和积累而毕生发展的智力,其脑结构基础是言语功能区和概念形成与存贮的大脑结构。液态智力是指空间关系和形象思维在视、听感知觉基础上形成的智力。它制约于各种感觉系统、运动系统和边缘系统的解剖生理特点。

  △胎儿出生以后神经元的数量不再增多,脑的发育表现在神经元的增大;轴突和树突增长,分枝增多;纤维披鞘;细胞间联结—突触不断增多扩大。□20岁左右的人脑在颅腔内最为充盈。20岁以后,脑内细胞的数量以每日十万左右的数字递增。60岁时人脑细胞大约减少了10-15%,脑沟裂增宽和脑室扩大显而易见。这个过程在70岁以后加速进行。然而人们的智力在20岁以后并非逐渐下降。相反晶态智力随个人学业的完成、复杂经验的积累而逐渐增长,甚至一些退休老年人努力学习仍可提高晶态智力。

本文转载链接:2006年4月“生理心理学”串讲资料(2)

分享到:
  • 站内搜索
  • 课程搜索
  • 试题搜索

热门搜索:教材 报名 查分 免考 考试计划