您的位置:自考365 > 复习指导 > 笔记串讲 > 公共课 > 2002年10月全国高等教育自学考试高等数学(一)试题

2002年10月全国高等教育自学考试高等数学(一)试题

2005-06-14 00:00   【 】【我要纠错

  课程代码:00020

  一、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其号码填在题干的括号内。每小题1分,共40分)

  1.设A={x|-3  },  B={x|0  },则有(  )

  A.A  B  B.A  B  C.(A  D.  (A

  2.设f(x)的定义域是[0,4],则f(x2)的定义域是(  )

  A.[0,16]  B.[0,2]  C.[-2,2]  D.[-16,16]

  3.函数y=sinx-sin|x|的值域是(  )

  A.{0}  B.[-1,1]  C.[0,1]  D.[-2,2]

  4.设f(x)=  ,g(x)=1-x,则f(g(x))=(  )

  A.  B.  C.  D.2+x

  5.设函数f(x)=ax2+c在(0,+)内严格单调减少,则a,c应满足(  )

  A.a>0且c=0  B.a>0且c  0

  C.a<0且c为任意实数D.a>0且c为任意实数

  6.  =(  )

  A.0  B.1  C.x  D.

  7.  =(  )

  A.a  B.lna  C.ea  D.1

  8.下列区间中为函数f(x)=  (  )

  A.(-  ,-2)  B.(-2,+  )

  C.(-  ,-1)  D.(-1,+  )

  9.函数f(x)=在x=1处间断是因为(  )

  A.f(x)在x=1处无定义B.不存在

  C.不存在D.不存在

  10.当x时,sin与x相比是(  )

  A.高阶无穷小量B.低阶无穷小量

  C.同阶但不等价无穷小量D.等价无穷小量

  11.已知函数f(x)=,则f(x)在x=0处(  )

  A.间断B.导数不存在

  C.导数f‘(0)=-1  D.导数f’(0)=1

  12.设f(x)=sin(3x+  ),则=(  )

  A.-3  B.3  C.0  D.-1

  13.设f(x)=ex+2,则f‘(x+2)=(  )

  A.ex+2  B.ex+4  C.2ex+2  D.2ex+4

  14.当|  |很小且f‘(x0)  ,函数在x=x0处改变量y和微分dy的关系是(  )

  A.  y<dy  B.  y>dy  C.  y=dy  D.  y  dy

  15.设y=sin2x+cosx2,则dy=(  )

  A.sin2x-2xsinx2dx  B.(sin2x-2xsinx2)dx

  C.sin2x+2xsinx2dx  D.(sin2x+2xsinx2)dx

  16.设y=ln(1+2x),则=(  )

  A.  B.

  C.-  D.

  17.函数y=(x+1)3在区间(-1,2)内(  )

  A.单调增B.单调减C.不增不减D.有增有减

  18.函数y=x3+4在区间(-1,1)内是()

  A.下凸B.上凸

  C.既有下凸又有上凸D.直线段

  19.函数y=|lnx|的拐点是(  )

  A.(1,0)  B.(e,1)  C.(2,ln2)  D.不存在

  20.函数y=的水平渐近线方程是(  )

  A.y=0  B.y=1  C.y=3  D.不存在

  21.  ,则f(x)=(  )

  A.3  B.9  C.  +C  D.

  22.  =(  )

  A.axlna+C  B.  C.  D.ax+lna+C

  23.  (  )

  A.  B.-

  C.-  D.-2

  24.  (  )

  A.  B.

  C.  D.arctgx+C

  25.  (  )

  A.0  B.1  C.+  D.不存在

  26.  (  )

  A.>0  B.<0  C.=0  D.不能确定

  27.  (  )

  A.-  B.  C.2  D.-2

  28.  (  )

  A.sint2  B.cosx2  C.2xcosx2  D.sinx2

  29.广义积分(  )

  A.-2  B.2  C.0  D.发散

  30.下列广义积分中发散的是(  )

  A.  B.  C.  D.

  31.下列级数中,收敛的是(  )

  A.  B.

  C.  D.

  32.下列级数中,条件收敛的是(  )

  A.  B.

  C.  D.

  33.级数的和是(  )

  A.1  B.  C.  D.

  34.函数ln(1+x)的展开式ln(1+x)=的收敛区间是(  )

  A.(-1,1)  B.[-1,1]  C.[-1,1]  D.(-1,1]

  35.函数lnx按(x-1)幂的级数展开式是(  )

  A.  B.

  C.  D.

  36.设z=ln(x+e  ),则(  )

  A.  B.

  C.  D.

  37.设z=sin(x2-y2)则(  )

  A.-sin(x2-y2)  B.sin(x2-y2)

  C.-4x2sin(x2-y2)  D.-4x2sin(x2-y2)+2cos(x2-y2)

  38.设z=则dz()

  A.  B.

  C.  D.

  39.设D:x2+y2,则=()

  A.  B.4

  C.  D.2

  40.下列函数中为的解的是(  )

  A.x=y3  B.x=  C.y=x3  D.y=

  二、计算题(一)(共3小题,每小题4分,共12分)

  41.求

  42.求不定积分

  43.求微分方程的通解。

  三、计算题(二)(共4小题,每小题7分,共28分)

  44.设y=  .

  45.计算

  46.求幂级数的收敛域。

  47.计算围成的平面区域。

  四、应用题(每小题8分,共16分)

  48.求函数在区间[1,6]上的最大值和最小值。

  49.设某商店售出x台录相机时的边际利润为

  且已知L(0)=0,试求

  (1)售出40台时的总利润L;

  (2)售出60台时,前30台的平均利润和后30台的平均利润(其中的单位为百元/台)。

  五、证明题(本大题共4分)

  50.设函数f(x)在[a,b](b>a)上连续,且在此区间上f(x)>0.

  证明

本文转载链接:2002年10月全国高等教育自学考试高等数学(一)试题

分享到:
  • 站内搜索
  • 课程搜索
  • 试题搜索

热门搜索:教材 报名 查分 免考 考试计划